radar-python
Release 0.0.4

Mar 23, 2020

Contents

1 Quick Start

2 Radar Client

3 Documentation

3.1
3.2
33
34
3.5

Install
Examples
Endpoints
Models e
License,

4 Indices and tables

Python Module Index

Index

radar-python, Release 0.0.4

Welcome to Radar! You can use Radar to add location context to your apps with just a few lines of code. This
library provides convenient access to Radar’s APIs from your python applications or command line. https://radar.io/
documentation/api

Contents 1

https://radar.io/documentation/api
https://radar.io/documentation/api

radar-python, Release 0.0.4

2 Contents

CHAPTER 1

Quick Start

Want to jump right in? Below is a quick overview of how to get started using the radar-python library to power location
based applications. Signup for your free account here https://radar.io/signup and grab your API keys to get started.

from radar import RadarClient

initialize client with your project's secret key
SECRET_KEY = "<YOUR SECRET KEY>"
radar = RadarClient (SECRET_KEY)

create a geofence
data = {
"description": "Example Store",
"type": "circle",
"coordinates": [-73.98706, 40.7041029],
"radius": 100,
"tag": "store",
"externalId": "123",
}

new_geofence = radar.geofences.create (data=data)
Geocode an IP address, converting IP address to country, state if available

ip_location = radar.geocode.ip(ip="107.77.199.117")

mwn

>>> print (ip_location)

{

"city": "Atoka",
"country": "United States",
"countryCode": "US",
"countryFlag": "\ud83c\uddfa\ud83c\uddf8",
"latitude": 34.385929107666016,
"longitude": -96.12832641601562,
"meta": {
"code": 200

(continues on next page)

https://radar.io/signup

radar-python, Release 0.0.4

(continued from previous page)

}r

"postalCode": "74525",
"state": "Oklahoma'",
"stateCode": "OK"

}

mmwn

Compare a route by bike vs foot

origin = (40.7041029, -73.98706)

destination = (40.7141029, -73.99706)

routes = radar.route.distance(origin, destination, modes="bike, foot")
mmn

>>> print (f"by foot: {routes.foot}\nby bike: {routes.bike}")

by foot: <distance=2.8 km duration=34 mins>

by bike: <distance=3.2 km duration=12 mins>

mmwn

Let a user know what hotels are nearby using place search
user_location = (40.7043, -73.9867)
radar.search.places (near=user_location, categories="hotel-lodging")
mmn
[
<Radar Place: _id='5ded545230409c49f439d943' name='1l Hotel Brooklyn Bridge'
—categories=['hotel-lodging', 'hotel']>,
<Radar Place: _1id='59c1f5898be4c5ce940b559f"' name='Dazzler Hotels' categories=[
— 'hotel-lodging', 'inn', 'hotel', 'resort']>,
<Radar Place: _id="'59bf2f8d8be4c5ce9409d9f9'" name='Hotel St. George' categories=[
— 'hotel-lodging', 'hotel']>,
<Radar Place: _id='5ded528630409c49f41b36al’' name='Hampton Inn' categories=/[
— 'hotel-lodging', 'hotel']>,
<Radar Place: _1id='59c1f5898bedc5ce940b559¢c' name='Hampton Inn Brooklyn Downtown'
—categories=["'hotel-lodging', 'hotel', 'inn']>

]

mwn

4 Chapter 1. Quick Start

CHAPTER 2

Radar Client

class radar.RadarClient (secret_key=None, pub_key=None)
The RadarClient class provides convenient access to Radar’s APIL.

API endpoints with authentication level Publishable are safe to call client-side. You should use your publishable
API keys to call these endpoints. Use your Test Publishable key for testing and non-production environments.
Use your Live Publishable key for production environments.

API endpoints with authentication level Secret are only safe to call server-side. You should use your secret API
keys to call these endpoints. Use your Test Secret key for testing and non-production environments. Use your
Live Secret key for production environments. Include your API key in the Authorization header.

Examples

>>> from radar import RadarClient
>>> radar = RadarClient (secret_key="sk_test_123")
>>> radar.geofences.list ()

radar-python, Release 0.0.4

6 Chapter 2. Radar Client

CHAPTER 3

Documentation

3.1 Install

Radar-python requires Python 3.4 or greater.

Below we assume you have the default Python environment already configured on your computer and you intend to
install radar—-python inside of it. If you want to create and work with Python virtual environments, please follow
instructions on venv and virtual environments.

First, make sure you have the latest version of pip (the Python package manager) installed. If you do not, refer to the
Pip documentation and install pip first.

3.1.1 Install the released version

The easiest (and best) way to install radar-python is through pip:

Install the current release of radar—-python with pip:

’$ pip install radar-python

To upgrade to a newer release use the ——upgrade flag:

’$ pip install --upgrade radar-python

If you do not have permission to install software systemwide, you can install into your user directory using the ——user
flag:

’$ pip install --user radar-python

Alternatively, you can manually download radar-python from GitHub or PyPI. To install one of these versions,
unpack it and run the following from the top-level source directory using the Terminal:

’$ pip install .

https://docs.python.org/3/library/venv.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://pip.pypa.io/en/stable/installing/
http://www.pip-installer.org/
https://github.com/radarlabs/radar-python/releases
https://pypi.python.org/pypi/networkx

radar-python, Release 0.0.4

3.1.2 Dependencies

Python 3.4+ is required.
* requests - python-requests library handles HTTP requests.

Installing through pip takes care of dependencies for you.

3.2 Examples

Contents

e Quick Start
e [nitialization
* Geofences

* Events

* Users

* Context

» Search

e Geocode

* Route

3.2.1 Quick Start

Want to jump right in? Below is a quick overview of how to get started using the radar-python library to power location
based applications. Signup for your free account here https://radar.io/signup and grab your API keys to get started.

from radar import RadarClient

initialize client with your project's secret key
SECRET_KEY = "<YOUR SECRET KEY>"

radar = RadarClient (SECRET_KEY)

create a geofence

data = {
"description": "Example Store",
"type": "circle",
"coordinates": [-73.98706, 40.7041029],
"radius": 100,
"tag": "store",
"externalId": "123",
}
new_geofence = radar.geofences.create (data=data)

Geocode an IP address, converting IP address to country, state if available

ip_location = radar.geocode.ip (ip="107.77.199.117")

mown

(continues on next page)

8 Chapter 3. Documentation

http://docs.python-requests.org
https://radar.io/signup

radar-python, Release 0.0.4

(continued from previous page)

>>> print (ip_location)

{
"city": "Atoka",
"country": "United States”,
"countryCode": "US",
"countryFlag": "\ud83c\uddfa\ud83c\uddf8",
"latitude": 34.385929107666016,
"longitude": -96.12832641601562,
"meta": {

"code": 200

}r
"postalCode": "74525",
"state": "Oklahoma'",
"stateCode": "OK"

}

mwn

Compare a route by bike vs foot

origin = (40.7041029, -73.98706)
destination = (40.7141029, -73.99706)
routes = radar.route.distance(origin, destination,

mmwn

>>> print (f"by foot: {routes.foot}\nby bike:
by foot: <distance=2.8 km duration=34 mins>

by bike: <distance=3.2 km duration=12 mins>
mmn

modes="bike, foot™)

{routes.bike}")

Let a user know what hotels are nearby using place search

user_location = (40.7043, —-73.9867)
radar.search.places (near=user_location,
[

<Radar Place: _id='"'5ded545230409¢c49f439d943"
—categories=['hotel-lodging', 'hotel']>,

<Radar Place: _1d='59c1f5898be4cbce940b559f"'
— 'hotel-lodging', 'inn', 'hotel', 'resort']>,

<Radar Place: _1d='59bf2f8d8be4c5ce9409d9f9"’
— 'hotel-lodging', 'hotel']>,

<Radar Place: _1id='5ded528630409c49f41b36al’
— 'hotel-lodging', 'hotel']>,

<Radar Place: _1id='59c1f5898be4cbce940b559c"’
—categories=['hotel-lodging', 'hotel',

1

mwn

'inn']>

categories="hotel-lodging")

name="'1 Hotel Brooklyn Bridge'
name='Dazzler Hotels' categories=[
name="'Hotel St.

George' categories=/[

name='"Hampton Inn' categories=[

name="Hampton Inn Brooklyn Downtown'

3.2.2 Initialization

Everything goes through the radar client, so start by initializing RadarClient with your API keys:

>>> from radar import RadarClient
>>> radar = RadarClient ('secret')

The radar client provides access to all the radar API’s such as geofences, places, geocoding, search. Examples for

each endpoint are included below.

3.2. Examples

radar-python, Release 0.0.4

3.2.3 Geofences
Geofences represent custom regions or places monitored in your project. Depending on your use case, a geofence
might represent a retail store, a neighborhood, and so on.

Radar geofencing is more powerful than native iOS or Android geofencing, with cross-platform support for unlimited
geofences, polygon geofences, and stop detection.

https://radar.io/documentation/geofences

from radar import RadarClient

initialize client with your project's secret key
SECRET_KEY = "<YOUR SECRET KEY>"

radar = RadarClient (SECRET_KEY)

create a geofence

data = {
"description": "Example Store",
"type": "circle",

"coordinates": [-73.98706, 40.7041029],
"radius": 100,
"tag": "store",
"externalId": "123",
}

new_geofence = radar.geofences.create (data=data)

get a geofence by tag and externalld
geofence = radar.geofences.get (tag="store", externalld="123")
print (geofence)

list geofences
for geofence in radar.geofences.list():
print (f"Geofence: {geof 3

list users in a geofence
users_in_geofence = radar.geofences.list_users(tag="store", externalld="123")

delete a geofence, can call geofence.delete() if it's already been fetched
radar.geofences.delete (tag="store", externalld="123")

3.2.4 Events

An event represents a change in user state. Events can be uniquely referenced by Radar _id.

https://radar.io/documentation/api#events

from radar import RadarClient

initialize client with your project's secret key
SECRET_KEY = "<YOUR SECRET KEY>"
radar = RadarClient (SECRET_KEY)

get an event by id
event = radar.events.get (id="123")
print (event)

(continues on next page)

10 Chapter 3. Documentation

https://radar.io/documentation/geofences
https://radar.io/documentation/api#events

radar-python, Release 0.0.4

(continued from previous page)

1list events
for event in radar.events.list():
print (f"Event: {event.type} at {event.createdAt}")

1list events from a certain time window
from datetime import datetime, timedelta, time

yesterday = datetime.now() - timedelta (days=1)

yesterday_9am = datetime.combine (yesterday, time(9))

yesterday_llam = datetime.combine (yesterday, time(1l1))

radar.events.list (createdAfter=yesterday_9am, createdBefore=yesterday_llam)

verify an event
radar.events.verify (id="123", "accept")
radar.events.verify (id="123", value=1)

delete an event, can call event.delete() 1if it's already been fetched
radar.events.delete (1d="123")

Using this method, authentication happens during then initialization of the object. If the authentication is successful,
the retrieved session cookie will be used in future requests. Upon cookie expiration, authentication will happen again
transparently.

3.2.5 Users

A user represents a user tracked in your project. Users can be referenced by Radar _id, userId, or deviceId

https://radar.io/documentation/api#users

from radar import RadarClient

initialize client with your project's secret key
SECRET_KEY = "<YOUR SECRET KEY>"
radar = RadarClient (SECRET_KEY)

get a user by _id, externalld, or deviceId
user = radar.user.get ("123")
print (user)

list the 50 most recently updated users, and any geofences they're 1in
for user in radar.users.list (1limit=50):
print (f"User: {user._id}, last updated at

for geofence in user.geofences:
print (f"...in geofence {geo

pmy

delete a user, can call user.delete() if it's already been fetched
radar.users.delete ("123")

3.2.6 Context

Gets context for a location without sending device or user identifiers to the server.

https://radar.io/documentation/api#context

3.2. Examples 11

https://radar.io/documentation/api#users
https://radar.io/documentation/api#context

radar-python, Release 0.0.4

from radar import RadarClient

initialize client with your project's secret key and publishable key
SECRET_KEY = "<YOUR SECRET KEY>"

PUB_KEY = "<YOUR PUB KEY>"

radar = RadarClient (secret_key=SECRET_KEY, pub_key=PUB_KEY)

Get context for a location without sending device or user identifiers to the server.
coordinates = (40.702640, -73.990810)
context = radar.context.get (coordinates=coordinates)
if "place" in dir (context):
print (f"Location is at place: {context.place.name}")

print (context)
mmn

{
"live": false,
"geofences": [],
"olace": |
"_id": "5dc9ada22004860034be2f80",
"categories": [
"food-beverage”,
"cafe",
"coffee-shop"
]/
"chain": |
"domain": "starbucks.com",
"name": "Starbucks",
"slug": "starbucks"
}s
"location": {
"coordinates": [
-73.990924,
40.702719
1,
"type": "Point"
}/
"name": "Starbucks"
}/
"country": {
"_id": "5¢cf694f66da6a800683f4d71",
"code": "US",
"name": "United States",
"type": "country"
}/
"state": {
"_id": "5cf695096da6a800683f4e7£t",
"code": "NY",
"name": "New York",
"type": "state"
}
"dma": {
"_id": "5¢cf695016da6a800683f4e06",
"code": "501",
"name": "New York",
"type": "dma"
}/

(continues on next page)

12 Chapter 3. Documentation

radar-python, Release 0.0.4

(continued from previous page)

"postalCode": |
"_id": "5cf695286da6a800683f5911",

"code": "11201",
"name": "11201",
"type": "postalCode"

},
}

mmwn

3.2.7 Search

https://radar.io/documentation/api#search

from radar import RadarClient

initialize client with your project's secret key
SECRET_KEY = "<YOUR SECRET KEY>"
radar = RadarClient (SECRET_KEY)

Search for users near a store to send a promotional offer
store_location = (40.7043, -73.9867)
users = radar.search.users (near=store_location)
for user in users:
send a push notification
pass

Power a store locator using geofence search
user_location = (40.7043, -73.9867)

nearby_stores = radar.search.geofences (near=user_location, tags="store", limit=10)

Let a user know what hotels are nearby using place search

radar.search.places (near=user_location, categories="hotel-lodging")
mmn

[

<Radar Place: _id='5ded545230409c49f439d943"' name='1l Hotel Brooklyn Bridge' ,
—categories=["'hotel-lodging', 'hotel']>,

<Radar Place: _id='59c1f5898be4c5ce940b559f"' name='Dazzler Hotels' categories=[
— 'hotel-lodging', 'inn', 'hotel', 'resort']>,

<Radar Place: _id='59bf2f8d8bedc5ce9409d9f9' name='Hotel St. George' categories=/[
— 'hotel-lodging', 'hotel']>,

<Radar Place: _1id='5ded528630409c49f41b36al' name='Hampton Inn' categories=/[
— 'hotel-lodging', 'hotel']>,

<Radar Place: _1d='59c1f5898bedc5ce940b559¢c' name='Hampton Inn Brooklyn Downtown'
—categories=['hotel-lodging', 'hotel', 'inn']>

]

mmn

Power a destination selector using address autocomplete

radar.search.autocomplete (query="20 jay st", near=user_location)
mmn

[

<Radar Address: latitude=40.703945 longitude=-73.98671 formattedAddress='20 Jay_
—~Street, Brooklyn, New York, NY 11201 USA'>,

<Radar Address: latitude=40.717976 longitude=-74.010188 formattedAddress='20 Jay,_,
—~St, Manhattan, New York, NY 10013 USA'>,

(continues on next page)

3.2. Examples 13

https://radar.io/documentation/api#search

radar-python, Release 0.0.4

(continued from previous page)

<Radar Address: latitude=40.74862 longitude=-74.181978 formattedAddress='20 Jay,,
—~St, Newark, NJ USA'>,

<Radar Address: latitude=40.923457 longitude=-74.170418 formattedAddress='20 Jay,,
—~Street, Paterson, NJ USA'>,

<Radar Address: latitude=40.908339 longitude=-74.510157 formattedAddress='20 Jay,,
—St, Rockaway, NJ USA'>
]

mmwn

3.2.8 Geocode

https://radar.io/documentation/api#geocode

from radar import RadarClient

initialize client with your project's secret key
SECRET_KEY = "<YOUR SECRET KEY>"
radar = RadarClient (SECRET_KEY)

Geocodes an address, converting address to coordinates.

address = radar.geocode.forward (query="20 jay st brooklyn™") [0]
print (address)
print (f" {address.latitude}, {address.longitude}")
>>> print (address)
{
"borough": "Brooklyn",
"city": "New York",
"confidence": "exact",
"country": "United States",
"countryCode": "US",
"countryFlag": "\ud83c\uddfa\ud83c\uddf8",
"formattedAddress": "20 Jay Street, Brooklyn, New York, NY 11201 USA",
"geometry": {
"coordinates": [
-73.986675,
40.704262
]/
"type": "Point"
}/
"latitude": 40.704262,
"longitude": -73.986675,
"addressLabel": "20 Jay Street’”,
"neighborhood": "DUMBO",
"number": "20",
"postalCode": "11201",
"state": "New York",
"stateCode": "NY",
"street": "Jay Street"
}
>>> print (f"{address.latitude}, {address.longitude}")
40.704262, -73.986675

mmn

(continues on next page)

14 Chapter 3. Documentation

https://radar.io/documentation/api#geocode

radar-python, Release 0.0.4

(continued from previous page)

Reverse geocodes a location, converting coordinates to address.

address = radar.geocode.reverse (coordinates=(40.7041895, -73.9867797)) [0]
mmn
>>> print (address)
{
"borough": "Brooklyn",
"city": "New York",
"country": "United States",
"countryCode": "US",
"countryFlag": "\ud83c\uddfa\ud83c\uddf8",
"distance": 0.015,
"formattedAddress": "20 Jay St, Brooklyn, New York, NY USA",
"geometry": {
"coordinates": [
-73.986802,
40.704053
]/
"type": "Point"
}s
"latitude": 40.704053,
"longitude": -73.986802,
"addressLabel": "20 Jay St",
"neighborhood": "DUMBO",
"number": "20",
"state": "New York",
"stateCode": "NY",
"street": "Jay St"
}
>>> print (address.formattedAddress)
20 Jay St, Brooklyn, New York, NY USA

mmwn

Geocode an IP address, converting IP address to country, state if available

ip_location = radar.geocode.ip (ip="107.77.199.117")

mwn

>>> print (ip_location)

{
"city": "Atoka",
"country": "United States",
"countryCode": "US",
"countryFlag": "\ud83c\uddfa\ud83c\uddf8",
"latitude": 34.385929107666016,
"longitude": -96.12832641601562,
"meta": {

"code": 200

}/
"postalCode": "74525",
"state": "Oklahoma",
"stateCode": "OK"

}

mmn

3.2. Examples 15

radar-python, Release 0.0.4

3.2.9 Route

https://radar.io/documentation/api#route

from radar import RadarClient

initialize client with your project's secret key
SECRET_KEY = "<YOUR SECRET KEY>"

radar = RadarClient (SECRET_KEY)

Compare a route by bike vs foot

origin = (40.7041029, -73.98706)
destination = (40.7141029, -73.99706)
routes = radar.route.distance(origin, destination, modes="bike, foot")

mmn

>>> print (f"by foot: {routes.foot}\nby bike: {routes.bike}")
by foot: <distance=2.8 km duration=34 mins>

by bike: <distance=3.2 km duration=12 mins>

mwn

Whats the quickest way to get from a user's origin to destination?

origin = (40.7041029, -73.98706)
destination = (40.7141029, -73.99706)
routes = radar.route.distance(origin, destination, modes="transit,car,bike, foot")
(quickest_mode, quickest_route) = min/(
[("car", routes.car), ("transit", routes.transit), ("bike", routes.bike)],

key=lambda route: route[l].duration.value,

)

mwn

>>> print (f"quickest route is by {quickest_mode}, which will take {quickest_route.
—duration.value:.2f} min")
quickest route is by car, which will take 9.57 min

mmwn

3.3 Endpoints

Contents

* Geofences
e Users

e Events

* Context

* Geocode

e Search

* Route

16 Chapter 3. Documentation

https://radar.io/documentation/api#route

radar-python, Release 0.0.4

3.3.1 Geofences

class radar.endpoints.Geofences (radar, requester)

create (data={})
Creates a geofence.

If a geofence with the specified tag and externalld already exists, the request will fail.
https://radar.io/documentation/api#create- geofence
Returns Geofence

delete (id=None, tag=None, externalld=None)
https://radar.io/documentation/api#delete- geofence

get (id=None, tag=None, externalld=None)
Gets a geofence by id or tag and externalld

https://radar.io/documentation/api#get- geofence
Returns Geofence

1list (limit=None, createdBefore=None, createdAfter=None, tag=None)
Lists geofences. Geofences are sorted descending by createdAt

https://radar.io/documentation/api#list-geofences
Parameters
e limit (int, optional (default=100))- max number of geofences to return.

* createdBefore (datetime, optional (default=None)) — pagination cur-
SOr.

* createdAfter (datetime, optional (default=None)) — pagination cur-
SOT.

* tag(str, optional (default=None)) - lists geofences with specified tag.
Returns list of Geofence

list_users (id=None, tag=None, externalld=None, limit=None, updateBefore=None, up-
datedAfter=None)
Lists users in a geofence.

The geofence can be uniquely referenced by Radar _id or by tag and externalld. Users are sorted descend-
ing by updatedAt.

https://radar.io/documentation/api#list- geofence-users
Returns list of User

upsert (tag=None, externalld=None, data={})
Upserts a geofence.

If a geofence with the specified tag and externalld already exists, it will be updated. If not, it will be
created.

https://radar.io/documentation/api#upsert-geofence

Returns Geofence

3.3. Endpoints 17

https://radar.io/documentation/api#create-geofence
https://radar.io/documentation/api#delete-geofence
https://radar.io/documentation/api#get-geofence
https://radar.io/documentation/api#list-geofences
https://radar.io/documentation/api#list-geofence-users
https://radar.io/documentation/api#upsert-geofence

radar-python, Release 0.0.4

3.3.2 Users

class radar.endpoints.Users (radar, requester)

delete (id=None, userld=None, deviceld=None)
Deletes a user. The user can be referenced by Radar _id, userld, or deviceld

https://radar.io/documentation/api#delete-user

get (id=None, userld=None, deviceld=None)
Gets a user. The user can be referenced by Radar _id, userld, or deviceld

https://radar.io/documentation/api#get-user
Returns User

1list (limit=None, updatedBefore=None, updatedAfter=None)
List users, sorted descending by updatedAt

https://radar.io/documentation/api#list-users
Parameters
e limit (int, optional (default=100))—Max number of users to return.

* updateBefore (datetime, optional)-— A cursor for use in pagination. Retrieves
users updated before the specified datetime.

* updatedAfter (datetime, optional)- A cursor for use in pagination. Retrieves
users updated after the specified datetime.

Returns list of User

3.3.3 Events

class radar.endpoints.Events (radar, requester)

delete (id)
Deletes an event. The event can be uniquely referenced by Radar _id

https://radar.io/documentation/api#delete-event

get (id)
Gets an event. The event can be uniquely referenced by Radar _id

https://radar.io/documentation/api#get-event
Returns Event

list (limit=None, createdBefore=None, createdAfter=None)
Lists events. Events are sorted descending by createdAt.

https://radar.io/documentation/api#list-events
Parameters
e 1limit (int, optional (default=100))- Max number of events to return.

* createdBefore (datetime, optional) — A cursor for use in pagination. Re-
trieves events created before the specified datetime.

18 Chapter 3. Documentation

https://radar.io/documentation/api#delete-user
https://radar.io/documentation/api#get-user
https://radar.io/documentation/api#list-users
https://radar.io/documentation/api#delete-event
https://radar.io/documentation/api#get-event
https://radar.io/documentation/api#list-events

radar-python, Release 0.0.4

* createdAfter (datetime, optional)-— A cursor for use in pagination. Retrieves
events created after the specified datetime.

Returns list of Event

verify (id, verification=None, value=None, verifiedPlaceld=None)
Verifies an event.

Events can be accepted or rejected after user check-ins or other forms of verification. Event verifications
will be used to improve the confidence level of future events.

https://radar.io/documentation/api#verify-event
Parameters
e id (str)—id of the event to verify
* verification (str, optional)-one of “accept”, “reject”, “unverify”

* value (int, optional)-one of 1 (accept), -1 (reject), O (unverify)

* verifiedPlaceld(str, optional)-For user.entered_place events, the ID of the
verified place.

Example

>>> radar.events.verify ('123', 'accept')
>>> radar.events.verify ('123', value=1)

3.3.4 Context

class radar.endpoints.Context (radar, requester)
get (coordinates)

Gets context for a location without sending device or user identifiers to the server.

Parameters coordinates ((latitude, Ilongitude)) - the coordinates of the location

Examples

>>> radar.context.get (coordinates=(40.123, -73.456))

Returns object with the radar context for the provided location

Return type RadarContext
3.3.5 Geocode
class radar.endpoints.Geocode (radar, requester)
forward (query)

Geocodes an address, converting address to coordinates.

https://radar.io/documentation/api#tgeocode-forward

3.3. Endpoints 19

https://radar.io/documentation/api#verify-event
https://radar.io/documentation/api#geocode-forward

radar-python, Release 0.0.4

Parameters query (str)— The address to geocode.
Returns list of Address
ip (ip)
Geocodes an IP address, converting IP address to partial address.
https://radar.io/documentation/api#geocode-ip
Parameters ip (str)— The IP address to geocode.
Returns :class: ‘~radarmodels.address.Address

reverse (coordinates)
Reverse geocodes a location, converting coordinates to address.

https://radar.io/documentation/api#geocode-reverse

Parameters coordinates ((latitude, longitude)) — the coordinates to reverse
geocode

Returns list of Address

3.3.6 Search

class radar.endpoints.Search (radar, requester)

autocomplete (query, near, limit=None)
Autocompletes partial addresses and place names, sorted by relevance.

https://radar.io/documentation/api#search-autocomplete
Parameters
* query (str)— The partial address or place name to autocomplete.

e near ((latitude, longitude)) — A location for the search in the format (lati-
tude,longitude).

e limit (int, optional (default=10)) - The max number of addresses to re-
turn. A number between 1 and 100.

Returns list of Address

Example

>>> radar.search.autocomplete (near=(40.7041029,-73.98706), categories="coffee-
—shop")

[<Radar Place: name='Brooklyn Roasting Company'>,

<Radar Place: name='Starbucks'>,

<Radar Place: name="Dunkin'">]

geofences (near, tags=None, radius=None, limit=None)
Searches for geofences near a location, sorted by distance.

https://radar.io/documentation/api#search- geofences
Parameters

e near ((latitude, longitude)) — A location for the search in the format (lati-
tude,longitude).

20 Chapter 3. Documentation

https://radar.io/documentation/api#geocode-ip
https://radar.io/documentation/api#geocode-reverse
https://radar.io/documentation/api#search-autocomplete
https://radar.io/documentation/api#search-geofences

radar-python, Release 0.0.4

* tags (str, optional)- The tags to filter. A string, comma-separated.

e radius (int, optional (default=1000))- The radius to search, in meters. A
number between 100 and 10000.

e limit (int, optional (default=100))- The max number of geofences to re-
turn. A number between 1 and 1000.

Returns list of Geofence

places (near, chains=None, categories=None, groups=None, radius=None, limit=None)
Searches for places near a location, sorted by distance.

https://radar.io/documentation/api#search-places
Parameters

* near ((latitude, longitude)) — A location for the search in the format (lati-
tude,longitude).

* chains (str, optional)— The chain slugs to filter. A string, comma-separated.
* categories (str, optional)-The categories to filter. A string, comma-separated.
* groups (str, optional)- The groups to filter. A string, comma-separated.

e radius (int, optional (default=1000))- The radius to search, in meters. A
number between 100 and 10000.

e limit (int, optional (default=100))- The max number of places to return.
A number between 1 and 1000.

Returns list of Place

Example

>>> radar.search.places (query="brooklyn roasting", near=(40.7041029,-73.
—98706))

users (near, radius=None, limit=None)
Searches for users near a location, sorted by distance.

https://radar.io/documentation/api#search-users
Parameters

* near ((latitude, longitude)) — A location for the search. pair of lati-
tude,longitude.

e radius (int, optional (default=1000))- The radius to search,in meters. A
number between 100 and 10000.

e limit (int, optional (default=100))- The max number of places to return.
A number between 1 and 1000.

Returns list of User

3.3.7 Route

class radar.endpoints.Route (radar, requester)

3.3. Endpoints 21

https://radar.io/documentation/api#search-places
https://radar.io/documentation/api#search-users

radar-python, Release 0.0.4

distance (origin, destination, modes, units="metric’)
Calculates the travel distance and duration between two locations.

https://radar.io/documentation/api#route-distance
Parameters
* origin (str)— The origin. A string in the format latitude,longitude.
* destination (str)— The destination. A string in the format latitude,longitude.

* modes (str)— The travel modes. A string, comma-separated, including one or more of
foot, bike, car, and transit.

* units (str, optional (default="metric"))- The distance units. A string,
metric or imperial.

Returns Routes

3.4 Models

3.4.1 Geofence

class radar.models.geofence.Geofence (radar, data={})

A geofence represents a custom region or place monitored in your project. Geofences can be uniquely referenced
by Radar _id or by tag and externalld.

Parameters

e _id (string) — The unique ID for the geofence, provided by Radar. An alphanumeric
string.

* createdAt (datetime)— The datetime when the geofence was created.

* live (boolean) — true if the geofence was created with your live API key, false if the
user was created with your test API key.

* tag (string)— An optional group for the geofence.

* externalld (string) — An optional external ID for the geofence that maps to your
internal database.

* description (string)— A description for the geofence.
* type (string) - The type of geofence geometry, either polygon or circle.

* geometry (GeoJSON) — The geometry of the geofence. Coordinates for type polygon. A
calculated polygon approximation for type circle. A Polygon in GeoJSON format.

* geometryCenter (GeoJSON) — The center of the circle for type circle. The calculated
centroid of the polygon for type polygon. A Point in GeoJSON format.

* geometryRadius (number) — The radius of the circle in meters for type circle.
* metadata (dictionary)— An optional set of custom key-value pairs for the geofence.

* userId (string)— An optional user restriction for the geofence. If set, the geofence will
only generate events for the specified user. If not set, the geofence will generate events for
all users.

* enabled (boolean) — If true, the geofence will generate events. If false, the geofence
will not generate events. Defaults to true.

22

Chapter 3. Documentation

https://radar.io/documentation/api#route-distance

radar-python, Release 0.0.4

3.4.2 User

class radar.models.user.User (radar, data={})
A user represents a user tracked in your project. Users can be referenced by Radar _id, userld, or deviceld.

Parameters

3.4.3 Event

e _id(string)— A unique ID for the user, provided by Radar. An alphanumeric string.

* live (boolean) - true if the user was created with your live API key, false if the user was

created with your test API key.

* userlId (string)— A stable unique ID for the user.
e devicelId (string)— A device ID for the user.
* description (string)— An optional description for the user.

* metadata (dict)— An optional dictionary of custom metadata for the user.

* location (GeoJSON) — The user’s last known location, a Point in GeoJSON format.

* locationAccuracy (number) — The accuracy of the user’s last known location in me-
ters.

* foreground (boolean) — true if the user’s last known location was updated in the fore-
ground, false if the user’s last known location was updated in the background.

* stopped (boolean) — true if the user’s last known location was updated while stopped,
false if the user’s last known location was updated while moving.

* deviceType (string) - The user’s device type, one of iOS, Android, or Web.

* updatedAt (datetime)— The datetime when the user’s location was last updated.
* geofences (list of Geofence) — An array of the user’s last known geofences.

* place (Place)— When Places is enabled, the user’s last known place.

* insights (dict)— When Insights is enabled, the user’s learned approximate home and
office locations, and home, office, and traveling state.

class radar.models.event.Event (radar, data={})
An event represents a change in user state. Events can be uniquely referenced by Radar _id.

Parameters

* _id (str) - The unique ID for the event, provided by Radar. An alphanumeric string.
* createdAt (datet ime) — The datetime when the event was created.

* live (bool) — true if the event was generated for a user and geofence created with your
live API key, false if the event was generated for a user and geofence created with your test
API key.

* type (str) — The type of event. By default, events are generated when a user enters
a geofence (type user.entered_geofence) or exits a geofence (type user.exited_geofence).
When Insights is enabled, events will also be generated when a user enters their home
(type user.entered_home), exits their home (type user.exited_home), enters their office
(type user.entered_office), exits their office (type user.exited_office), starts traveling (type
user.started_traveling), or stops traveling (user.stopped_traveling).

3.4. Models

23

radar-python, Release 0.0.4

* user (dict) - The user for which the event was generated.

* geofence (dict) — For user.entered_geofence and user.exited_geofence events, the ge-
ofence for which the event was generated, including description, tag, and externalld.

* place (dict) — For user.entered_place and user.exited_place events, the place for which
the event was generated, including name, categories, chain, and facebookId.

* alternatePlaces (1ist) — For user.entered_place events, alternate place candidates.
* verifiedPlace (dict) — For verified user.entered_place events, the verified place.

e location (GeoJSON) — The location of the user at the time of the event. A Point in
GeoJSON format.

* locationAccuracy (float) — The accuracy of the user’s location at the time of the
event in meters.

* confidence (int)— The confidence level of the event, one of 3 (high), 2 (medium), or 1
(low).

* duration (float) — The duration between entry and exit events, in minutes, for
user.exited_geofence and user.exited_place events.

* verification (int) — The verification for the event, one of 1 (accepted), -1 (rejected),
or O (unverified).

3.4.4 Place

class radar.models.place.Place (radar, data={})
Place of interest

Parameters
e id(str)-
* name (str)—
e chain (dict) -
* facebookPlaceId? (str)—
e facebookId? (str)—
e location (GeoJSON.Point)—
* categories (list of str) —

* metadata (dict) —

3.4.5 Context
class radar.models.context .RadarContext (radar, data={})
Location context
Parameters
* live (bool) -
* geofences (list of Geofence) —
* place (list of P1ace, optional) —

* country (Region, optional) —

24 Chapter 3. Documentation

radar-python, Release 0.0.4

3.4.6 Region

* state (Region, optional) —
* dma (Region, optional) —
* postalCode (Region, optional) —

e fraud (FraudObject, optional)-

class radar.models.region.Region (radar, data={})
A location region, either country, state, dma, or postalCode

Parameters

e id(str)-

* type (str) -
* name (str)—
* code (str) -

» flag(str)-—

3.4.7 Address

class radar.models.address.Address (radar, data={})
Location address

Parameters

* borough (str)—

* city(str)-

* confidence (str) - one of ‘exact’, ‘interpolated’, ‘fallback’
* country (str)—

* countryCode (str)—

* countryFlag (str)—

* distance (float)—

* formattedAddress (str)—

* geometry (GeoJSON.Point) —
* addressLabel (str)—

* placelabel (str)—

* number (str)—

e latitude (float) -

* longitude (float)—

* neighborhood (str) -

* postalCode (str)—

* source (str)-—

3.4. Models

25

radar-python, Release 0.0.4

* state (str) -
e stateCode (str)—

e street (str) -

3.4.8 Route

class radar.models.route.Route (distance=None, duration=None, mode=None)
The travel distance and duration between two locations

Parameters
e mode (str)—one of ‘car’, ‘bike’, ‘foot’, ‘transit’
e duration (RouteDuration)—

e distance (RouteDistance)—

Routes

class radar.models.route.Routes (radar, data={})
A collection of Route

RouteDistance
class radar.models.route.RouteDistance (value, text)
Travel distance of the route
Parameters
* value (str) — value of distance in requested units

e text (str)-human readable distance

RouteDuration
class radar.models.route.RouteDuration (value, text)
Travel duration of the route
Parameters
¢ value (str)— minutes

e text (str)-human readable duration

3.5 License

MIT License
Copyright (c) 2020 Radar
Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights

(continues on next page)

26 Chapter 3. Documentation

radar-python, Release 0.0.4

(continued from previous page)

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .

3.5. License 27

radar-python, Release 0.0.4

28

Chapter 3. Documentation

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

29

radar-python, Release 0.0.4

30

Chapter 4. Indices and tables

Python Module Index

radar, 5

31

radar-python, Release 0.0.4

32

Python Module Index

Index

A

Address (class in radar.models.address), 25
autocomplete () (radarendpoints.Search method),
20

C

Context (class in radar.endpoints), 19
create () (radarendpoints.Geofences method), 17

D

delete () (radar.endpoints.Events method), 18
delete () (radar.endpoints.Geofences method), 17
delete () (radar.endpoints.Users method), 18

distance () (radar.endpoints.Route method), 21

E

Event (class in radarmodels.event), 23
Events (class in radar.endpoints), 18

F

forward () (radar.endpoints.Geocode method), 19

G

Geocode (class in radar.endpoints), 19

Geofence (class in radarmodels.geofence), 22
Geofences (class in radar.endpoints), 17
geofences () (radar.endpoints.Search method), 20
get () (radarendpoints.Context method), 19

get () (radar.endpoints.Events method), 18
get () (radarendpoints.Geofences method), 17
get () (radar.endpoints.Users method), 18

ip () (radar.endpoints.Geocode method), 20

L

list () (radar.endpoints.Events method), 18
list () (radar.endpoints.Geofences method), 17
list () (radar.endpoints.Users method), 18

list_users ()
17

(radar.endpoints.Geofences method),

P

Place (class in radarmodels.place), 24
places () (radar.endpoints.Search method), 21

R

radar (module), 5

RadarClient (class in radar), 5
RadarContext (class in radar.models.context), 24
Region (class in radarmodels.region), 25
reverse () (radar.endpoints.Geocode method), 20
Route (class in radar.endpoints), 21

Route (class in radar.models.route), 26
RouteDistance (class in radar.models.route), 26
RouteDuration (class in radarmodels.route), 26
Routes (class in radar.models.route), 26

S

Search (class in radar.endpoints), 20

U

upsert () (radar.endpoints.Geofences method), 17
User (class in radar.models.user), 23

Users (class in radar.endpoints), 18

users () (radar.endpoints.Search method), 21

V

verify () (radar.endpoints.Events method), 19

33

	Quick Start
	Radar Client
	Documentation
	Install
	Examples
	Endpoints
	Models
	License

	Indices and tables
	Python Module Index
	Index

